If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+36y+247=0
a = 1; b = 36; c = +247;
Δ = b2-4ac
Δ = 362-4·1·247
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-2\sqrt{77}}{2*1}=\frac{-36-2\sqrt{77}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+2\sqrt{77}}{2*1}=\frac{-36+2\sqrt{77}}{2} $
| 0/10=n | | (x+8)+(2x-3)+(6x-5)=180 | | 3x-4=-(1/20x+3 | | (1/2)x^2-9=4^x+3 | | 13x+25=12x+29 | | 12x+1=14x-1 | | 3/5x=3.2 | | 10x-9=15x+16 | | 3/2x=1/81 | | 5x+28=143 | | 5(2m+3)-3/5=2/5(m+8) | | 3x=4+-(1/2)x+3 | | 24x/x+15=23 | | 28÷4=g | | 64x+576=1920 | | 2(7-3x)+3=35 | | 9.1k=6.37 | | 2x^2+64=-24x | | 2x+4x+2x-4-3=17 | | 63s=12 | | 3(x+4)^2-9=66 | | 12x+17=3x+116 | | 8/3x-1/2=3/4 | | 2(x+4)-(x-3)=21 | | -+x=-9 | | 7x-(5+6x)=18 | | 33=79=(2p-1)-2 | | 7x-14=x+2(x-1) | | 20=-10+3(-2-3x) | | 4p-p-p=p | | 8x=1146 | | 8-5x-6x=41 |